If it's not what You are looking for type in the equation solver your own equation and let us solve it.
300=80x-0.5x^2-(40x+300)
We move all terms to the left:
300-(80x-0.5x^2-(40x+300))=0
We calculate terms in parentheses: -(80x-0.5x^2-(40x+300)), so:We get rid of parentheses
80x-0.5x^2-(40x+300)
determiningTheFunctionDomain -0.5x^2+80x-(40x+300)
We get rid of parentheses
-0.5x^2+80x-40x-300
We add all the numbers together, and all the variables
-0.5x^2+40x-300
Back to the equation:
-(-0.5x^2+40x-300)
0.5x^2-40x+300+300=0
We add all the numbers together, and all the variables
0.5x^2-40x+600=0
a = 0.5; b = -40; c = +600;
Δ = b2-4ac
Δ = -402-4·0.5·600
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20}{2*0.5}=\frac{20}{1} =20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20}{2*0.5}=\frac{60}{1} =60 $
| 7x+6x+8-3=8x+5+4x | | 8x-84x=40 | | 0.3(10x+22)=3.6(0.2x+5) | | 3x-20+x+10+3x-20+x+10+3x-20+x+10+3x-20+x+10=360 | | A(n+1)=1/4*A(n) | | 3(-4n+9)=21 | | 6+3/4=9x-6 | | 8x-9=57 | | 3(-4n+9=21 | | 14x=11x=50 | | 5/x+4+2/x-3=14/(x+4)(x-3) | | 22/6x=84 | | 8×+3+6x+9=13×+5 | | F(12)=10x-5 | | 4t+5+2t-5t=3+4 | | b+4=-18-9b | | 2t−5=−10K= | | 4t=9+3t | | 8x-20+4x-40+8x-20+4x-40=360 | | 3x+4(5x)=-34 | | 4t+5t+2t-5t=3+4 | | 4x+4-12=3x-4 | | 5m^2+3m-1=0 | | 8x-20=4x-40 | | 4x+8-3x=0 | | 8(3x+2)=20(x+1) | | e-18=20 | | 7x^2+9x+16=0 | | -0.54x+0.34x=5.8 | | 20(3x+2)=8(x+1) | | 2(20x-2)=36. | | r−6=3.5 |